numpy.random() in Python

The random is a module present in the NumPy library. This module contains the functions which are used for generating random numbers. This module contains some simple random data generation methods, some permutation and distribution functions, and random generator functions.

All the functions in a random module are as follows:

Simple random data

There are the following functions of simple random data:

1) p.random.rand(d0, d1, ..., dn)

This function of random module is used to generate random numbers or values in a given shape.

Example:

snippet
import numpy as np
a=np.random.rand(5,2)
a

Output:

Output
array([[0.74710182, 0.13306399], [0.01463718, 0.47618842], [0.98980426, 0.48390004], [0.58661785, 0.62895758], [0.38432729, 0.90384119]])

2) np.random.randn(d0, d1, ..., dn)

This function of random module return a sample from the "standard normal" distribution.

Example:

snippet
import numpy as np
a=np.random.randn(2,2)
a

Output:

Output
array([[ 1.43327469, -0.02019121], [ 1.54626422, 1.05831067]]) b=np.random.randn() b -0.3080190768904835

3) np.random.randint(low[, high, size, dtype])

This function of random module is used to generate random integers from inclusive(low) to exclusive(high).

Example:

snippet
import numpy as np
a=np.random.randint(3, size=10)
a

Output:

Output
array([1, 1, 1, 2, 0, 0, 0, 0, 0, 0])

4) np.random.random_integers(low[, high, size])

This function of random module is used to generate random integers number of type np.int between low and high.

Example:

snippet
import numpy as np
a=np.random.random_integers(3)
a
b=type(np.random.random_integers(3))
b
c=np.random.random_integers(5, size=(3,2))
c

Output:

Output
2 <type 'numpy.int32'> array([[1, 1], [2, 5], [1, 3]])

5) np.random.random_sample([size])

This function of random module is used to generate random floats number in the half-open interval [0.0, 1.0).

Example:

snippet
import numpy as np
a=np.random.random_sample()
a
b=type(np.random.random_sample())
b
c=np.random.random_sample((5,))
c

Output:

Output
0.09250360565571492 <type 'float'> array([0.34665418, 0.47027209, 0.75944969, 0.37991244, 0.14159746])

6) np.random.random([size])

This function of random module is used to generate random floats number in the half-open interval [0.0, 1.0).

Example:

snippet
import numpy as np
a=np.random.random()
a
b=type(np.random.random())
b
c=np.random.random((5,))
c

Output:

Output
0.008786953974334155 <type 'float'> array([0.05530122, 0.59133394, 0.17258794, 0.6912388 , 0.33412534])

7) np.random.ranf([size])

This function of random module is used to generate random floats number in the half-open interval [0.0, 1.0).

Example:

snippet
import numpy as np
a=np.random.ranf()
a
b=type(np.random.ranf())
b
c=np.random.ranf((5,))
c

Output:

Output
0.2907792098474542 <type 'float'> array([0.34084881, 0.07268237, 0.38161256, 0.46494681, 0.88071377])

8) np.random.sample([size])

This function of random module is used to generate random floats number in the half-open interval [0.0, 1.0).

Example:

snippet
import numpy as np
a=np.random.sample()
a
b=type(np.random.sample())
b
c=np.random.sample((5,))
c

Output:

Output
0.012298209913766511 <type 'float'> array([0.71878544, 0.11486169, 0.38189074, 0.14303308, 0.07217287])

9) np.random.choice(a[, size, replace, p])

This function of random module is used to generate random sample from a given 1-D array.

Example:

snippet
import numpy as np
a=np.random.choice(5,3)
a
b=np.random.choice(5,3, p=[0.2, 0.1, 0.4, 0.2, 0.1])
b

Output:

Output
array([0, 3, 4]) array([2, 2, 2], dtype=int64)

10) np.random.bytes(length)

This function of random module is used to generate random bytes.

Example:

snippet
import numpy as np
a=np.random.bytes(7)
a

Output:

Output
'nQ\x08\x83\xf9\xde\x8a'

Permutations

There are the following functions of permutations:

1) np.random.shuffle()

This function is used for modifying a sequence in-place by shuffling its contents.

Example:

snippet
import numpy as np
a=np.arange(12)
a
np.random.shuffle(a)
a

Output:

Output
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) array([10, 3, 2, 4, 5, 8, 0, 9, 1, 11, 7, 6])

2) np.random.permutation()

This function permute a sequence randomly or return a permuted range.

Example:

snippet
import numpy as np
a=np.random.permutation(12)
a

Output:

Output
array([ 8, 7, 3, 11, 6, 0, 9, 10, 2, 5, 4, 1])

Distributions

There are the following functions of permutations:

1) beta(a, b[, size])

This function is used to draw samples from a Beta distribution.

Example:

snippet
def setup(self):
        self.dist = dist.beta
        self.cargs = []
        self.ckwd = dict(alpha=2, beta=3)
        self.np_rand_fxn = numpy.random.beta
        self.np_args = [2, 3]
        self.np_kwds = dict()

2) binomial(n, p[, size])

This function is used to draw sample from a binomial distribution.

Example:

snippet
import numpy as np
n, p = 10, .6
s1= np.random.binomial(n, p, 10)
s1

Output:

Output
array([6, 7, 7, 9, 3, 7, 8, 6, 6, 4])

3) chisquare(df[, size])

This function is used to draw sample from a binomial distribution.

Example:

snippet
import numpy as np
np.random.chisquare(2,4)
sum(np.random.binomial(9, 0.1, 20000) == 0)/20000.

Output:

Output
array([6, 7, 7, 9, 3, 7, 8, 6, 6, 4])

4) dirichlet(alpha[, size])

This function is used to draw a sample from the Dirichlet distribution.

Example:

snippet
Import numpy as np
import matplotlib.pyplot as plt
s1 = np.random.dirichlet((10, 5, 3), 20).transpose()
plt.barh(range(20), s1[0])
plt.barh(range(20), s1[1], left=s1[0], color='g')
plt.barh(range(20), s1[2], left=s1[0]+s1[1], color='r')
plt.title("Lengths of Strings")
plt.show()

Output:

numpy.random in Python

5) exponential([scale, size])

This function is used to draw sample from an exponential distribution.

Example:

snippet
def __init__(self, sourceid, targetid):
		self.__type = 'Transaction'
		self.id = uuid4()
		self.source = sourceid
		self.target = targetid
		self.date = self._datetime.date(start=2015, end=2019)
		self.time = self._datetime.time()

		if random() < 0.05:
			self.amount = self._numbers.between(100000, 1000000)
		self.amount = npr.exponential(10)

		if random() < 0.15:
			self.currency = self._business.currency_iso_code()
		else:
			self.currency = None

6) f(dfnum, dfden[, size])

This function is used to draw sample from an F distribution.

Example:

snippet
import numpy as np
dfno= 1.
dfden = 48.
s1 = np.random.f(dfno, dfden, 10)
np.sort(s1)

Output:

Output
array([0.00264041, 0.04725478, 0.07140803, 0.19526217, 0.23979 , 0.24023478, 0.63141254, 0.95316446, 1.40281789, 1.68327507])

7) gamma(shape[, scale, size])

This function is used to draw sample from a Gamma distribution

Example:

snippet
import numpy as np
shape, scale = 2., 2.
s1 = np.random.gamma(shape, scale, 1000)
import matplotlib.pyplot as plt
import scipy.special as spss
count, bins, ignored = plt.hist(s1, 50, density=True)
a = bins**(shape-1)*(np.exp(-bins/scale) /
(spss.gamma(shape)*scale**shape))
plt.plot(bins, a, linewidth=2, color='r')
plt.show()
numpy.random in Python

8) geometric(p[, size])

This function is used to draw sample from a geometric distribution.

Example:

snippet
import numpy as np
a = np.random.geometric(p=0.35, size=10000)
(a == 1).sum() / 1000

Output:

Output
3.

9) gumbel([loc, scale, size])

This function is used to draw sample from a Gumble distribution.

Example:

snippet
import numpy as np
lov, scale = 0, 0.2
s1 = np.random.gumbel(loc, scale, 1000)
import matplotlib.pyplot as plt
count, bins, ignored = plt.hist(s1, 30, density=True)
plt.plot(bins, (1/beta)*np.exp(-(bins - loc)/beta)* np.exp( -np.exp( -(bins - loc) /beta) ),linewidth=2, color='r')
plt.show()

Output:

numpy.random in Python

10) hypergeometric(ngood, nbad, nsample[, size])

This function is used to draw sample from a Hypergeometric distribution.

Example:

snippet
import numpy as np
good, bad, samp = 100, 2, 10
s1 = np.random.hypergeometric(good, bad, samp, 1000)
plt.hist(s1)
plt.show()

Output:

Output
(array([ 13., 0., 0., 0., 0., 163., 0., 0., 0., 824.]), array([ 8. , 8.2, 8.4, 8.6, 8.8, 9. , 9.2, 9.4, 9.6, 9.8, 10. ]), <a list of 10 Patch objects>)

numpy.random in Python

11) laplace([loc, scale, size])

This function is used to draw sample from the Laplace or double exponential distribution with specified location and scale.

Example:

snippet
import numpy as np
location, scale = 0., 2.
s = np.random.laplace(location, scale, 10)
s

Output:

Output
array([-2.77127948, -1.46401453, -0.03723516, -1.61223942, 2.29590691, 1.74297722, 1.49438411, 0.30325513, -0.15948891, -4.99669747])

12) logistic([loc, scale, size])

This function is used to draw sample from logistic distribution.

Example:

snippet
import numpy as np
import matplotlib.pyplot as plt
location, scale = 10, 1
s1 = np.random.logistic(location, scale, 10000)
count, bins, ignored = plt.hist(s1, bins=50)
count
bins
ignored
plt.show()

Output:

Output
array([1.000e+00, 1.000e+00, 1.000e+00, 0.000e+00, 1.000e+00, 1.000e+00, 1.000e+00, 5.000e+00, 7.000e+00, 1.100e+01, 1.800e+01, 3.500e+01, 5.300e+01, 6.700e+01, 1.150e+02, 1.780e+02, 2.300e+02, 3.680e+02, 4.910e+02, 6.400e+02, 8.250e+02, 9.100e+02, 9.750e+02, 1.039e+03, 9.280e+02, 8.040e+02, 6.530e+02, 5.240e+02, 3.380e+02, 2.470e+02, 1.650e+02, 1.150e+02, 8.500e+01, 6.400e+01, 3.300e+01, 1.600e+01, 2.400e+01, 1.400e+01, 4.000e+00, 5.000e+00, 2.000e+00, 2.000e+00, 1.000e+00, 1.000e+00, 0.000e+00, 1.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 1.000e+00]) array([ 0.50643911, 0.91891814, 1.33139717, 1.7438762 , 2.15635523, 2.56883427, 2.9813133 , 3.39379233, 3.80627136, 4.2187504 , 4.63122943, 5.04370846, 5.45618749, 5.86866652, 6.28114556, 6.69362459, 7.10610362, 7.51858265, 7.93106169, 8.34354072, 8.75601975, 9.16849878, 9.58097781, 9.99345685, 10.40593588, 10.81841491, 11.23089394, 11.64337298, 12.05585201, 12.46833104, 12.88081007, 13.2932891 , 13.70576814, 14.11824717, 14.5307262 , 14.94320523, 15.35568427, 15.7681633 , 16.18064233, 16.59312136, 17.00560039, 17.41807943, 17.83055846, 18.24303749, 18.65551652, 19.06799556, 19.48047459, 19.89295362, 20.30543265, 20.71791168, 21.13039072]) <a list of 50 Patch objects>

numpy.random in Python

13) lognormal([mean, sigma, size])

This function is used to draw sample from a log-normal distribution.

Example:

snippet
import numpy as np
mu, sigma = 2., 1.
s1 = np.random.lognormal(mu, sigma, 1000)
import matplotlib.pyplot as plt
count, bins, ignored = plt.hist(s1, 100, density=True, align='mid')
a = np.linspace(min(bins), max(bins), 10000)
pdf = (np.exp(-(np.log(a) - mu)**2 / (2 * sigma**2))/ (a * sigma * np.sqrt(2 * np.pi)))
plt.plot(a, pdf, linewidth=2, color='r')
plt.axis('tight')
plt.show()

Output:

numpy.random in Python

14) logseries(p[, size])

This function is used to draw sample from a logarithmic distribution.

Example:

snippet
import numpy as np
x = .6
s1 = np.random.logseries(x, 10000)
count, bins, ignored = plt.hist(s1)
def logseries(k, p):
return -p**k/(k*log(1-p))
plt.plot(bins, logseries(bins, x)*count.max()/logseries(bins, a).max(), 'r')
plt.show()

Output:

numpy.random in Python

15) multinomial(n, pvals[, size])

This function is used to draw sample from a multinomial distribution.

Example:

snippet
import numpy as np
np.random.multinomial(20, [1/6.]*6, size=1)

Output:

Output
array([[4, 2, 5, 5, 3, 1]])

16) multivariate_normal(mean, cov[, size, ...)

This function is used to draw sample from a multivariate normal distribution.

Example:

snippet
import numpy as np
mean = (1, 2)
coveriance = [[1, 0], [0, 100]] 
import matplotlib.pyplot as plt
a, b = np.random.multivariate_normal(mean, coveriance, 5000).T
plt.plot(a, b, 'x')
plt.axis('equal'023
030
)
plt.show()

Output:

numpy.random in Python

17) negative_binomial(n, p[, size])

This function is used to draw sample from a negative binomial distribution.

Example:

snippet
import numpy as np
s1 = np.random.negative_binomial(1, 0.1, 100000)
for i in range(1, 11):
probability = sum(s1<i) / 100000.
print i, "wells drilled, probability of one success =", probability

Output:

Output
1 wells drilled, probability of one success = 0 2 wells drilled, probability of one success = 0 3 wells drilled, probability of one success = 0 4 wells drilled, probability of one success = 0 5 wells drilled, probability of one success = 0 6 wells drilled, probability of one success = 0 7 wells drilled, probability of one success = 0 8 wells drilled, probability of one success = 0 9 wells drilled, probability of one success = 0 10 wells drilled, probability of one success = 0

18) noncentral_chisquare(df, nonc[, size])

This function is used to draw sample from a noncentral chi-square distribution.

Example:

snippet
import numpy as np
import matplotlib.pyplot as plt
val = plt.hist(np.random.noncentral_chisquare(3, 25, 100000), bins=200, normed=True)
plt.show()

Output:

numpy.random in Python

19) normal([loc, scale, size])

This function is used to draw sample from a normal distribution.

Example:

snippet
import numpy as np
import matplotlib.pyplot as plt
mu, sigma = 0, 0.2 # mean and standard deviation
s1 = np.random.normal(mu, sigma, 1000)
abs(mu - np.mean(s1)) < 0.01
abs(sigma - np.std(s1, ddof=1)) < 0.01
count, bins, ignored = plt.hist(s1, 30, density=True)
plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *np.exp( - (bins - mu)**2 / (2 * sigma**2) ), linewidth=2, color='r')
plt.show()

Output:

numpy.random in Python

20) pareto(a[, size])

This function is used to draw samples from a Lomax or Pareto II with specified shape.

Example:

snippet
import numpy as np
import matplotlib.pyplot as plt
b, m1 = 3., 2.  # shape and mode
s1 = (np.random.pareto(b, 1000) + 1) * m1
count, bins, _ = plt.hist(s1, 100, density=True)
fit = b*m**b / bins**(b+1)
plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')
plt.show()

Output:

numpy.random in Python

21) power(a[, size])

This function is used to draw samples in [0, 1] from a power distribution with positive exponent a-1.

Example:

snippet
import numpy as np
x = 5. # shape
samples = 1000
s1 = np.random.power(x, samples)
import matplotlib.pyplot as plt
count, bins, ignored = plt.hist(s1, bins=30)
a = np.linspace(0, 1, 100)
b = x*a**(x-1.)
density_b = samples*np.diff(bins)[0]*b
plt.plot(a, density_b)
plt.show()

Output:

numpy.random in Python

22) rayleigh([scale, size])

This function is used to draw sample from a Rayleigh distribution.

Example:

snippet
val = hist(np.random.rayleigh(3, 100000), bins=200, density=True)
meanval = 1
modeval = np.sqrt(2 / np.pi) * meanval
s1 = np.random.rayleigh(modeval, 1000000)
100.*sum(s1>3)/1000000.

Output:

Output
0.087300000000000003

numpy.random in Python

23) standard_cauchy([size])

This function is used to draw sample from a standard Cauchy distribution with mode=0.

Example:

snippet
import numpy as np
import matplotlib.pyplot as plt
s1 = np.random.standard_cauchy(1000000)
s1 = s1[(s1>-25) & (s1<25)]  # truncate distribution so it plots well
plt.hist(s1, bins=100)
plt.show()

Output:

numpy.random in Python

24) standard_exponential([size])

This function is used to draw sample from a standard exponential distribution.

Example:

snippet
import numpy as np
n = np.random.standard_exponential((2, 7000))

Output:

Output
array([[0.53857931, 0.181262 , 0.20478701, ..., 3.66232881, 1.83882709, 1.77963295], [0.65163973, 1.40001955, 0.7525986 , ..., 0.76516523, 0.8400617 , 0.88551011]])

25) standard_gamma([size])

This function is used to draw sample from a standard Gamma distribution.

Example:

snippet
import numpy as np
shape, scale = 2., 1.
s1 = np.random.standard_gamma(shape, 1000000)
import matplotlib.pyplot as plt
import scipy.special as sps
count1, bins1, ignored1 = plt.hist(s, 50, density=True)
y = bins1**(shape-1) * ((np.exp(-bins1/scale))/ (sps.gamma(shape) * scale**shape))
plt.plot(bins1, y, linewidth=2, color='r')
plt.show()

Output:

numpy.random in Python

26) standard_normal([size])

This function is used to draw sample from a standard Normal distribution.

Example:

snippet
import numpy as np
import matplotlib.pyplot as plt
s1= np.random.standard_normal(8000)
s1
q = np.random.standard_normal(size=(3, 4, 2))
q

Output:

Output
array([-3.14907597, 0.95366265, -1.20100026, ..., 3.47180222, 0.9608679 , 0.0774319 ]) array([[[ 1.55635461, -1.29541713], [-1.50534663, -0.02829194], [ 1.03949348, -0.26128132], [ 1.51921798, 0.82136178]], [[-0.4011052 , -0.52458858], [-1.31803814, 0.37415379], [-0.67077365, 0.97447018], [-0.20212115, 0.67840888]], [[ 1.86183474, 0.19946562], [-0.07376021, 0.84599701], [-0.84341386, 0.32081667], [-3.32016062, -1.19029818]]])

27) standard_t(df[, size])

This function is used to draw sample from a standard Student's distribution with df degree of freedom.

Example:

snippet
intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515,8230,8770])
s1 = np.random.standard_t(10, size=100000)
np.mean(intake)
intake.std(ddof=1)
t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
h = plt.hist(s1, bins=100, density=True)
np.sum(s1<t) / float(len(s1))
plt.show()

Output:

Output
6677.5 1174.1101831694598 0.00864

numpy.random in Python

28) triangular(left, mode, right[, size])

This function is used to draw sample from a triangular distribution over the interval.

Example:

snippet
import numpy as np
import matplotlib.pyplot as plt
h = plt.hist(np.random.triangular(-4, 0, 8, 1000000), bins=300,density=True)
plt.show()

Output:

numpy.random in Python

29) uniform([low, high, size])

This function is used to draw sample from a uniform distribution.

Example:

snippet
import numpy as np
import matplotlib.pyplot as plt
s1 = np.random.uniform(-1,0,1000)
np.all(s1 >= -1)
np.all(s1 < 0)
count, bins, ignored = plt.hist(s1, 15, density=True)
plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
plt.show()

Output:

numpy.random in Python

30) vonmises(m1, m2[, size])

This function is used to draw sample from a von Mises distribution.

Example:

snippet
import numpy as np
import matplotlib.pyplot as plt
m1, m2 = 0.0, 4.0
s1 = np.random.vonmises(m1, m2, 1000)
from scipy.special import i0
plt.hist(s1, 50, density=True)
x = np.linspace(-np.pi, np.pi, num=51)
y = np.exp(m2*np.cos(x-m1))/(2*np.pi*i0(m2))
plt.plot(x, y, linewidth=2, color='r')
plt.show()

Output:

numpy.random in Python

31) wald(mean, scale[, size])

This function is used to draw sample from a Wald, or inverse Gaussian distribution.

Example:

snippet
import numpy as np
import matplotlib.pyplot as plt
h = plt.hist(np.random.wald(3, 3, 100000), bins=250, density=True)
plt.show()

Output:

numpy.random in Python

32) weibull(a[, size])

This function is used to draw sample from a Weibull distribution.

Example:

snippet
import numpy as np
import matplotlib.pyplot as plt
from scipy import special
x=2.0
s=np.random.weibull(x, 1000)
a = np.arange(1, 100.)/50.
def weib(x, n, a):
return (a/n)*(x/n)**np.exp(-(x/n)**a)
count, bins, ignored = plt.hist(np.random.weibull(5.,1000))
a= np.arange(1,100.)/50.
scale = count.max()/weib(x, 1., 5.).max()
scale = count.max()/weib(a, 1., 5.).max()
plt.plot(x, weib(x, 1., 5.)*scale)
plt.show()

Output:

numpy.random in Python

33) zipf(a[, size])

This function is used to draw sample from a Zipf distribution.

Example:

snippet
import numpy as np
import matplotlib.pyplot as plt
from scipy import special
x=2.0
s=np.random.zipf(x, 1000)
count, bins, ignored = plt.hist(s[s<50], 50, density=True)
a = np.arange(1., 50.)
b= a**(-x) / special.zetac(x)
plt.plot(a, b/max(b), linewidth=2, color='r')
plt.show()

Output:

numpy.random in Python
Related Tutorial
Follow Us
https://www.facebook.com/Rookie-Nerd-638990322793530 https://twitter.com/RookieNerdTutor https://plus.google.com/b/117136517396468545840 #
Contents +